Translate

Saturday, November 10, 2018

Wrecking Ball, Demolition, or Deconstruction....Applicable to Squatters, Trespassers in the Hawaiian Islands

Demolishing a Building, etc.

                      - A Study -

                                        by Amelia Gora (2018)

The Kamehameha Schools are squatting on our properties and have failed to pay rents.

The following are possibilities:  use the buildings or wreck it/remove it off at their expense.


Your input would be appreciated.

Contact us at hawaiianhistory@gmail.com



Wrecking Ball

Wrecking ball


From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

Wrecking ball at rest

Wrecking ball in action
A wrecking ball is a heavy steel ball, usually hung from a crane, that is used for demolishing large buildings. It was most commonly in use during the 1950s and 1960s. Several wrecking companies claim to have invented the wrecking ball. An early documented use was in the breaking up of the SS Great Eastern in 1888–1889, by Henry Bath and Co, at Rock Ferry on the River Mersey.
In 1999, the wrecking ball was described as "one of the most common forms of large-scale coarse demolition."[1] Although the wrecking ball is still the most efficient way to raze a concrete frame structure, its use is decreasing. With the invention of hydraulic excavators and other machinery, the wrecking ball has become less common at demolition sites as its working efficiency is less than that of high reach excavators.

Construction and design[edit]

Modern wrecking balls have had a slight re-shaping, with the metal sphere changed into a pear shape with a portion of the top cut off. This shape allows the ball to be more easily pulled back through a roof or concrete slab after it has broken through.
Wrecking balls range from about 1,000 pounds (450 kg) to around 12,000 pounds (5,400 kg). The ball is made from forged steel, which means the steel is not cast into a mold in a molten state. It is formed under very high pressure while the steel is red hot (soft but not molten) to compress and to strengthen it.

Method of use[edit]

To demolish roofs and other horizontal spans, the ball is typically suspended by a length of steel chain attached to the lifting hook of a crane boom above the structure, the rope drum clutch is released and the ball is allowed to free-fall onto the structure. To demolish walls the ball is suspended at the desired height from a crane boom and a secondary steel rope pulls the ball toward the crane cab. The lateral rope drum clutch is then released and the ball swings as a pendulum to strike the structure. Another method for lateral demolition is to pivot the crane boom to accelerate the ball toward the target. This is repeated as needed until the structure is broken down into debris that can easily be loaded and hauled away. The demolition action is carried out entirely through the kinetic energy of the ball.
Demolition work has been carried out using a 5,500-pound (2,500 kg) wrecking ball suspended from a Kaman K-MAX helicopter.[2]
The same mechanism is applied to quarrying rock where an excavator lifts and releases a loose ball (called a drop ball) onto large rocks to reduce them to manageable size.

Modern equivalents[edit]

The advancement of technology led to the development and use of blasting charges, safer than dynamite and more efficient or practical than wrecking balls, to destroy buildings. The most common use of blasting charges is to implode a building, thus limiting collateral damage; see demolition. Wrecking balls are more likely to cause collateral damage, because it is difficult to completely control the swing of the ball.
However, wrecking balls are still used when other demolition methods may not be possible due to local environmental issues or asbestos/lead building content.

References[edit]

  1. Jump up ^ Lauritzen, edited by Erik K. (1994). Demolition and reuse of concrete and masonry: guidelines for demolition and reuse of concrete and masonry: proceedings of the Third International RILEM Symposium on Demolition and Reuse of Concrete and Masonry held in Odense, Denmark, organized by RILEM TC 121-DRG and the Danish Building Research Institute, Odense, Denmark 24–27 October 1993. London: E & FN Spon. p. 139. ISBN 0419184007.
  2. Jump up ^ Karman III, John R. (18 August 2008). "Demolition precedes new construction for Ursuline schools". Archived from the original on 26 October 2012.

Further reading[edit]

  • Byles, Jeff (2005). Rubble: unearthing the history of demolition. New York: Harmony Books. ISBN 140005057X.
  • Diven, Richard J. and Mark Shaurette (2010). Demolition: practices, technology, and management. Purdue University Press, West Lafayette, Indiana. ISBN 1557535671.
  • Liss, Helene, (2000). Demolition: the art of demolishing, dismantling, imploding, toppling & razing. New York: Black Dog & Leventhal: Distributed by Workman Pub. Co. ISBN 1579121497.

External links[edit]



Category:Demolition


From Wikipedia, the free encyclopedia
Jump to navigation Jump to search

DECONSTRUCTION

Deconstruction (building)

From Wikipedia, the free encyclopedia
Jump to navigationJump to search

Deconstruction of a building.
In the context of physical construction, deconstruction is the selective dismantlement of building components, specifically for re-use, repurposing, recycling, and waste management. It differs from demolition where a site is cleared of its building by the most expedient means. Deconstruction has also been defined as “construction in reverse”. The process of dismantling structures is an ancient activity that has been revived by the growing field of sustainable, green method of building.[1] Buildings, like everything, have a life-cycle. Deconstruction focuses on giving the materials within a building a new life once the building as a whole can no longer continue.
When buildings reach the end of their useful life, they are typically demolished and hauled to landfills. Building implosions or ‘wrecking-ball’ style demolitions are relatively inexpensive and offer a quick method of clearing sites for new structures. On the other hand, these methods create substantial amounts of waste. Components within old buildings may still be valuable, sometimes more valuable than at the time the building was constructed. Deconstruction is a method of harvesting what is commonly considered “waste” and reclaiming it into useful building material.

Contribution to sustainability[edit]

Deconstruction has strong ties to environmental sustainability. In addition to giving materials a new life cycle, deconstructing buildings helps to lower the need for virgin resources. This in turn leads to energy and emissions reductions from the refining and manufacture of new materials. As deconstruction is often done on a local level, many times on-site, energy and emissions are also saved in the transportation of materials. Deconstruction can potentially support communities by providing local jobs and renovated structures. Deconstruction work typically employs 3-6 workers for every one employed in a comparable demolition job.[citation needed] In addition, solid waste from conventional demolition is diverted from landfills. This is a major benefit because construction and demolition waste accounts for approximately 20% of the solid waste stream.[2]

Benefits of avoiding wood waste[edit]

In Canada, the CO2 Neutral Alliance has created a website[3] with resources for regulators and municipalities, developers and contractors, business owners and operators, and individuals and households. Benefits for municipalities include:[4]
  • Reducing disposal costs where waste collection, hauling or disposal is supported by the tax base
  • Establishing additional revenue streams
  • Making existing landfills last longer
  • Reducing greenhouse gas emissions caused by the decomposition of wood waste into methane from landfills
  • Stimulating local economies with new industries and employment
Improving the local environment and overall sustainability of your community For every three square feet of deconstruction, enough lumber can be salvaged to build one square foot of new construction. At this rate, if deconstruction replaced residential demolition, the United States could generate enough recovered wood to construct 120,000 new affordable homes each year. The deconstruction of a typical 2,000-square-foot (190 m2) wood frame home can yield 6,000 board feet of reusable lumber.[4] Every year the United States buries about 33 million tons of wood-related construction and demolition debris in landfills. As anaerobic microorganisms decompose this wood, it will release about five million tons of carbon equivalent in the form of methane gas.[4]

Typical methods of deconstruction[edit]

Deconstruction is commonly separated into two categories; structural and non-structural. Non-structural deconstruction, also known as “soft-stripping”, consists of reclaiming non-structural components, appliances, doors, windows, and finish materials. The reuse of these types of materials is commonplace and considered to be a mature market in many locales.
Structural deconstruction involves dismantling the structural components of a building. Traditionally this had only been performed to reclaim expensive or rare materials such as used brick, dimension stone, and extinct wood. In antiquity, it was common to raze stone buildings and reuse the stone; it was also common to steal stones from a building that was not being totally demolished: this is the literal meaning of the word dilapidated. Used brick and dimension limestone in particular have a long tradition of reuse due to their durability and color changes over time. Recently, the rise of environmental awareness and sustainable building has made a much wider range of materials worthy of structural deconstruction. Low-end, commonplace materials such as dimensional lumber have become part of this newly emerging market.
The United States military has utilized structural deconstruction in many of its bases. The construction methods of barracks, among other base structures, are usually relatively simple. They typically contained large amounts of lumber and used minimal adhesives and finish-work. In addition, the buildings are often identical, making the process of deconstructing multiple buildings much easier. Many barracks were built during the era prior to WWII, and have aged to the point where they now need to be torn down. Deconstruction was deemed very practical due to the abundance of labor the military has access to and the value of the materials themselves.
Natural disasters, such as hurricanes, floods, tsunamis, and earthquakes often leave a vast amount of usable building materials in their wake. Structures that remain standing are often deconstructed to provide materials for rebuilding the region.

Economic potential[edit]

Deconstruction’s economic viability varies from project to project. The amount of time and cost of labor are the main drawbacks. Harvesting materials from a structure can take weeks, whereas demolition may be completed in roughly a day. However, some of the costs, if not all, can be recovered. Reusing the materials in a new on-site structure, selling reclaimed materials, donating materials for income tax write-offs, and avoiding landfill “tipping fees” are all ways in which the cost of deconstruction can be made comparable to demolition.
Reclaiming the materials for a new on-site structure is the most economically and environmentally efficient option. Tipping fees and the costs of new materials are avoided; in addition, the transportation of the materials is non-existent. Selling the used materials or donating them to non-profit organizations are another effective way of gaining capital. Donations to NPO’s such as Habitat for Humanity’s ReStore are tax deductible. Many times it is possible to claim the value to be half of what that particular material would cost new. When donating rare or antique components it is sometimes possible to claim a higher value than a comparable, brand-new material.
Value can also be added to new structures that are built by implementing reused materials. The United States Green Building Council's program entitled Leadership in Energy and Environmental Design (LEED) offers seven credits relating to reusing materials. (This accounts for seven out of a maximum sixty-nine credits) These include credits for building-shell reuse, material reuse, and diverting waste from landfills. Building shell-reuse is particularly appropriate for shells made of dimension stone.
Deconstruction is well suited to job training for the construction trades. Taking down a building is an excellent way for a worker to learn how to put a building up. This is vital for the economic recovery of inner-city communities. Unskilled and low-skilled workers can receive on-the-job training in use of basic carpentry tools and techniques, as well as learning teamwork, problem-solving, critical thinking and good work habits.[5]

Process[edit]


Dismantling the Deutsche Bank Building in January 2008.
When choosing to deconstruct a building there are some important aspects that need to be taken into consideration. Developing a list of local contacts that are able to take used materials is an essential first step. These might include commercial architectural salvage businesses, reclamation yards, not-for-profit and social enterprise salvage warehouses, and dismantling contractors. Materials that cannot be salvaged may be recycled on-site or off-site, or taken to landfills. The next step involves identifying which, if any, are hazardous materials. Lead paint and asbestos are two substances in particular that need to be handled extremely cautiously and disposed of properly.
It is common practice, and common sense, to “soft-strip” the structure first; remove all appliances, windows, doors, and other finishing materials. These will account for a large percentage of the marketable components. After the non-structural deconstruction, structural is the next step. It is best to start at the roof and work down to the foundation.
Building components that are dismantled will need to be stored in a secure, dry location. This will protect them from water damage and theft. Once separated from the structure, materials can also be cleaned and/or refinished to increase value. Building an inventory list of the materials at hand will help determine where each item will be sent.

Designing for deconstruction (DfD)[edit]

"The end of the building’s useful life generates a stream of used materials that can be reprocessed for new construction. The selection of materials for reuse or recycling should not start at the end of the building’s life cycle, it should start at the design stage. Architects and engineers should keep the whole life cycle of the building in mind and select construction materials based on their capacity to be reused or recycled after the building has served its purpose."[6]
An upstream approach to deconstruction can be implemented into buildings during their design process. This is a current trend in sustainable architecture. Often, simple construction methods combined with high-grade, durable materials work best for DfD structures. Separating layers of a building’s infrastructure and making them visible can significantly simplify its deconstruction. Making components within systems separable also assists in being able to dismantle materials quickly and efficiently. This can be achieved by using mechanical fasteners such as bolts to connect parts. Allowing physical access to the fasteners is another needed aspect of this design. Also, it is important to use standardized materials and assemble them in a consistent manner throughout the project.
Some conventional construction methods and materials are difficult or impossible to deconstruct and should be avoided when designing for deconstruction. The use of nails and adhesives significantly slows down the deconstruction process and has a tendency to ruin otherwise reusable materials. Avoid hazardous materials altogether as they are detrimental to the natural environment and are non-reusable. Using mixed material grades makes the process of identifying pieces for resale difficult.
Deconstruction is important for more than just the end of a building’s life-cycle. Buildings that have been designed with deconstruction in mind are often easier to maintain and adapt to new uses. Saving the shell of a building or adapting interior spaces to meet new needs ensures that new structures have a small environmental impact.
An alternative worth considering is modular building, like the Habitat 67 project in Montreal, Quebec, Canada. This was a residential structure consisting of separate, functional apartments that could be put together in a variety of ways. As people moved in or out, the units could be reconfigured as desired.

See also[edit]

References[edit]

  1. Jump up ^ Taisei Corporation's Tecorep reducing CO2 emissions by 85%
  2. Jump up ^ Jackson, Mark, and Dennis Livingston. Building A Deconstruction Company: A Training Guide For Facilitators and Entrepreneurs. Washington, DC: Institute For Local Self-Reliance, 2001. A1.
  3. Jump up ^ CO2 Neutral Alliance Don’t Waste Wood website
  4. ^ Jump up to: a b c CO2 Neutral Alliance Don’t Waste Wood website
  5. Jump up ^ Seldman, Neil, and Kivi Leroux. Deconstruction: Salvaging Yesterday's Buildings for Tomorrow's Sustainable Communities. Washington, DC: Institute for Local Self-Reliance, 2000. 4.
  6. Jump up ^ Dr. Abdol Chini, University of Florida, M.E. Rinker Sr. School of Building Construction

External links[edit]




No comments: